Spurious localized highest-frequency modes in Schrödinger-type equations solved by finite-difference methods

نویسنده

  • Taras I. Lakoba
چکیده

High-frequency solutions of one or several Schrödinger-type equations are well known to differ very little from the plane wave solutions exp[±ikx]. That is, the potential terms impact the envelope of a high-frequency plane wave by only a small amount. However, when such equations are solved by a finite-difference method, the highest-frequency solutions may, under certain conditions, turn out to be localized. This may puzzle the researcher and suggest that the code may have an error. However, this is not an error but a numerical artifact, and in this note we explain it.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The massive Elko spinor field in the de Sitter braneworld model

The Elko spinor field is a spin 1/2 fermionic quantum field with a mass dimension introduced as a candidate of dark matter. In this work, we study the localization of Elko fields on a de Sitter thick brane constructed by a canonical or phantom scalar field. By presenting the mass-independent potentials of Kaluza-Klein (KK) modes in the corresponding Schrödinger equations, it is shown that the E...

متن کامل

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

On the spurious solutions in the high-order finite difference methods for eigenvalue problems

In this paper, the origins of spurious solutions occurring in the high-order finite difference methods are studied. Based on a uniform mesh, spurious modes are found in the high-order one-sided finite difference discretizations of many eigenvalue problems. Spurious modes are classified as spectral pollution and non-spectral pollution. The latter can be partially avoided by mesh refinement, whil...

متن کامل

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

Dispersive Properties of Numerical Schemes for Nonlinear Schrödinger Equations

In this article we report on recent work on building numerical approximation schemes for nonlinear Schrödinger equations. We first consider finite-difference space semi-discretizations and show that the standard conservative scheme does not reproduce at the discrete level the dispersion properties of the continuous Schrödinger equation. This is due to high frequency numerical spurious solutions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 245  شماره 

صفحات  -

تاریخ انتشار 2013